Abstract

We have introduced a semi-analytical IS technique suitable for multipole, rational function reflection coefficients, and used it for the design of dispersion-engineered planar waveguides. The technique is used to derive extensive dispersion maps, including higher dispersion coefficients, corresponding to three-, five- and seven-pole reflection coefficients. It is shown that common features of dispersion-engineered waveguides such as refractive-index trenches, rings and oscillations come naturally from this approach when the magnitude of leaky poles in increased. Increasing the number of poles is shown to offer a small but measureable change in higher order dispersion with designs dominated by a three pole design with a leaky pole pair of the smallest modulus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.