Abstract

A coupling between diffusional and mechanical relaxation raised from composition-dependent elastic constants, and its effects on the evolution of precipitates with finite misfit strain are investigated. Inverse ripening has been observed where smaller precipitate grows at the expense of a larger one. This occurs due to fluxes generated under elastically-strained solute gradients around precipitates that scales with Rr6 where R and r are the precipitate radius and the radial coordinate, respectively. Both isotropic and anisotropic dependency of elastic constants on the composition were considered. The latter leads to the emergence of new patterns of elastic anisotropy and rearrangement of precipitates in the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.