Abstract
We consider the inverse resonance problem in scattering theory. In one-dimensional setting, the scattering matrix consists of entries of meromorphic functions. The resonances are defined as the poles of the meromorphic determinant. For the compactly supported perturbation, we are able to quantitatively estimate the zeros and poles of each meromorphic entry. The size of potential support is connected to the zero density of scattered wave field due to the form of Fourier transform. We will investigate certain properties of Fourier transforms in scattering theory and derive the inverse uniqueness on scattering source given certain knowledge on the perturbation and all the given resonances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.