Abstract
Drivers have unique and rich driving behaviors when operating vehicles in traffic. This paper presents a novel driver behavior learning approach that captures the uniqueness and richness of human driver behavior in realistic driving scenarios. A stochastic inverse reinforcement learning (SIRL) approach is proposed to learn a distribution of cost function, which represents the richness of the human driver behavior with a given set of driver-specific demonstrations. Evaluations are conducted on the realistic driving data collected from the 3D driver-in-the-loop driving simulation. The results show that the learned stochastic driver model is capable of expressing the richness of the human driving strategies under different realistic driving scenarios. Compared to the deterministic baseline driver behavior model, the results reveal that the proposed stochastic driver behavior model can better replicate the driver's unique and rich driving strategies in a variety of traffic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.