Abstract

Our paper deals with the investigation of extensions of commutative groups by loops so that the quasigroups that result in the multiplication between cosets of the kernel subgroup are T-quasigroups. We limit our study to extensions in which the quasigroups determining the multiplication are linear functions without constant term, called linear abelian extensions. We characterize constructively such extensions with left-, right-, or inverse properties using a general construction according to an equivariant group action principle. We show that the obtained constructions can be simplified for ordered loops. Finally, we apply our characterization to determine the possible cardinalities of the component loop of finite linear abelian extensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.