Abstract

Based on the analysis and systematization of the inverse problems of dynamics, the study of the properties and features of the types of dynamic models under consideration, an approach is proposed for the development of appropriate methods of mathematical modeling based on the use and implementation of integral models in the form of Volterra equations of the I and II kind, their functional capabilities are determined in the study of various classes of problems, and also formulated the features that affect the choice of methods for their numerical solution. Methods for obtaining integral models are proposed, which are the basis for constructing algorithms for solving inverse problems of dynamics for a fairly wide class of dynamic objects. Integral methods for the identification of dynamic objects have been developed, which make it possible to obtain stable non-optimization algorithms for calculating the parameters of mathematical models. Recurrent methods of parametric identification of transfer functions of dynamic objects with an arbitrary input action are proposed (the obtained parameters of the transfer functions are also coefficients of the corresponding differential equations, which makes it possible to obtain equivalent mathematical models in the form of integral equations). The study of algorithms that implement the proposed identification methods allows us to conclude about their efficiency in terms of the amount of computation and ease of implementation, as well as the high accuracy of calculating the model parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call