Abstract

A mathematical model has been developed to calculate the discharge scenario and program regime in the tokamak with taking into account the nonlinear behavior of the iron core. The model includes the solution of two-dimensional equilibrium problems, and the evolution of the integral parameters of the plasma is described by the Kirchhoff equations. An effective numerical algorithm is proposed that allows one to solve the incorrect inverse equilibrium problem when holding currents are found for a given geometry and plasma parameters to ensure this equilibrium. On the example of the tokamak T-15, the equilibria and the program regime are calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.