Abstract
AbstractWe consider a one-dimensional fluid-solid interaction model governed by the Burgers equation with a time varying interface. We discuss the inverse problem of determining the shape of the interface from Dirichlet and Neumann data at one endpoint of the spatial interval. In particular, we establish unique results and some conditional stability estimates. For the proofs, we use and adapt some lateral estimates that, in turn, rely on appropriate Carleman and interpolation inequalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications on Applied Mathematics and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.