Abstract

The inverse scattering problem, whose goal is to reconstruct an unknown scattering object from its scattered wave, is essential in fundamental wave physics and its wide applications in imaging sciences. However, it remains challenging to invert multiple scattering accurately and efficiently. Here, we exploit the modified Born series to demonstrate an inverse problem solver that efficiently and directly computes inverse multiple scattering without making any assumptions. The inversion process is based on a physically intuitive approach and can be easily extended to other exact forward solvers. We utilize the proposed method in optical diffraction tomography and numerically and experimentally demonstrate 3D reconstruction of optically thick specimens with higher fidelity than those obtained using conventional methods based on the weak scattering approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.