Abstract

When a porous rock is saturated with an electrolyte, electrical fields are coupled with seismic waves via the electro-seismic conversion. Pride (1994 Phys. Rev. B 50 15678–96) derived the governing models, in which Maxwell equations are coupled with Biot's equations through the electro-kinetic mobility parameter. The inverse problem of the linearized electro-seismic conversion consists in two steps, namely the inversion of Biot's equations and the inversion of Maxwell equations. We analyze the reconstruction of conductivity and electro-kinetic mobility parameter in Maxwell equations with internal measurements, while the internal measurements are provided by the results of the inversion of Biot's equations. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines these two parameters. Moreover, a Lipschitz-type stability is proved based on the same sets of well-chosen boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call