Abstract
We consider a system of hyperbolic integro-differential equations for SH waves in a visco-elastic porous medium. The inverse problem is to recover a kernel (memory) in the integral term of this system. We reduce this problem to solving a system of integral equations for the unknown functions. We apply the principle of contraction mappings to this system in the space of continuous functions with a weight norm. We prove the global unique solvability of the inverse problem and obtain a stability estimate of a solution of the inverse problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.