Abstract
The questions of the one-value solvability of an inverse boundary value problem for a mixed type integro-differential equation with Caputo operators of different fractional orders and spectral parameters are considered. The mixed type integro-differential equation with respect to the main unknown function is an inhomogeneous partial integro-differential equation of fractional order in both positive and negative parts of the multidimensional rectangular domain under consideration. This mixed type of equation, with respect to redefinition functions, is a nonlinear Fredholm type integral equation. The fractional Caputo operators’ orders are smaller in the positive part of the domain than the orders of Caputo operators in the negative part of the domain under consideration. Using the method of Fourier series, two systems of countable systems of ordinary fractional integro-differential equations with degenerate kernels and different orders of integro-differentation are obtained. Furthermore, a method of degenerate kernels is used. In order to determine arbitrary integration constants, a linear system of functional algebraic equations is obtained. From the solvability condition of this system are calculated the regular and irregular values of the spectral parameters. The solution of the inverse problem under consideration is obtained in the form of Fourier series. The unique solvability of the problem for regular values of spectral parameters is proved. During the proof of the convergence of the Fourier series, certain properties of the Mittag–Leffler function of two variables, the Cauchy–Schwarz inequality and Bessel inequality, are used. We also studied the continuous dependence of the solution of the problem on small parameters for regular values of spectral parameters. The existence and uniqueness of redefined functions have been justified by solving the systems of two countable systems of nonlinear integral equations. The results are formulated as a theorem.
Highlights
Fractional calculus plays an important role in the mathematical modeling of many natural and engineering processes
We studied the continuous dependence of the solution of the problem on small parameters for regular values of spectral parameters
We study the questions of the one-value solvability of an inverse boundary value problem for a mixed type integro-differential equation with Caputo operators of different fractional orders and spectral parameters in a multidimensional rectangular domain
Summary
Fractional calculus plays an important role in the mathematical modeling of many natural and engineering processes (see [1]). The real need to know the properties of such special functions in solving direct and inverse problems for fractional partial differential equations has been shown in [22]. The theories of integral and integro-differential equations are important in studying the large directions of the general theory of equations of mathematical physics. Mixed type integer order integro-differential equations with degenerate kernels and spectral parameters are studied in [40,41]. We study the questions of the one-value solvability of an inverse boundary value problem for a mixed type integro-differential equation with Caputo operators of different fractional orders and spectral parameters in a multidimensional rectangular domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.