Abstract

Abstract In this paper, we study an inverse source problem for a degenerate and singular parabolic system where the boundary conditions are of Neumann type. We consider a problem with degenerate diffusion coefficients and singular lower-order terms, both vanishing at an interior point of the space domain. In particular, we address the question of well-posedness of the problem, and then we prove a stability estimate of Lipschitz type in determining the source term by data of only one component. Our method is based on Carleman estimates, cut-off procedures and a reflection technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.