Abstract

Omics studies frequently use samples collected during cohort studies. Conditioning on sample availability can cause selection bias if sample availability is nonrandom. Inverse probability weighting (IPW) is purported to reduce this bias. We evaluated IPW in an epigenome-wide analysis testing the association between DNA methylation (261,435 probes) and age in healthy adolescent subjects (n = 114). We simulated age and sex to be correlated with sample selection and then evaluated four conditions: complete population/no selection bias (all subjects), naïve selection bias (no adjustment), and IPW selection bias (selection bias with IPW adjustment). Assuming the complete population condition represented the "truth," we compared each condition to the complete population condition. Bias or difference in associations between age and methylation was reduced in the IPW condition versus the naïve condition. However, genomic inflation and type 1 error were higher in the IPW condition relative to the naïve condition. Postadjustment using bacon, type 1 error and inflation were similar across all conditions. Power was higher under the IPW condition compared with the naïve condition before and after inflation adjustment. IPW methods can reduce bias in genome-wide analyses. Genomic inflation is a potential concern that can be minimized using methods that adjust for inflation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.