Abstract

Interface temperature of electromagnetic pulse welding is difficult to measure by insitu methods. Here, the local temperature rise is investigated using the kinetics of precipitates and dispersoids (transformation or dissolution) at the interface zone (IZ) and affected zone (AZ) of three welds. This fine scale analysis allows estimating of local temperature range for AZ that reaches between 250 and 360 °C on both sides of narrow IZ, while the IZ itself experiences between 360 and 500 °C or even beyond 500 °C. The interface temperature increases with the increasing impact intensity. The current work estimated thermal field based on the precipitate transformations, which occur during the ultra-fast temperature rise at the interface in electromagnetic pulse welding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call