Abstract

Domain-inverted electro-optic films have many applications in photonic devices such as high-speed electro-optic switches and quasi-phase-matched second-harmonic generators. For example, inverted domains allow a uniform electrode structure to be used in a reversed-(Delta) (beta) directional coupler. Since corona poling is not applicable to create inversely poled structures in a crosslinkable polymer, direct-contact poling and liquid-contact poling are investigated. In unidirectional poling, liquid-contact poling allows poling electric fields higher than 250 V/micrometer to be applied, which is comparable to electricfield strengths in corona poling but much higher than those in direct-contact poling. For domain-inversion, the results also show that liquid-contact poling allows much higher poling electric fields to be applied than in direct- contact poling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call