Abstract

The problem of recovering acoustic sources, more specifically monopoles, from point-wise measurements of the corresponding acoustic pressure at a limited number of frequencies is addressed. To this purpose, a family of sparse optimization problems in measure space in combination with the Helmholtz equation on a bounded domain is considered. A weighted norm with unbounded weight near the observation points is incorporated into the formulation. Optimality conditions and conditions for recovery in the small noise case are discussed, which motivates concrete choices of the weight. The numerical realization is based on an accelerated conditional gradient method in measure space and a finite element discretization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.