Abstract

Inverse patchy colloids (IPCs) differ from conventional patchy particles because their patches repel (rather than attract) each other and attract (rather than repel) the part of the colloidal surface that is free of patches. These particular features occur, e.g. in heterogeneously charged colloidal systems. Here we consider overall neutral IPCs carrying two, relatively small, polar patches. Previous studies of the same model under planar confinement have evidenced the formation of branched, disordered aggregates composed of ring-like structures. We investigate here the bulk behavior of the system via molecular dynamics simulations, focusing on both the structure and the dynamics of the fluid phase in a wide region of the phase diagram. Additionally, the simulation results for the static observables are compared to the Associative Percus Yevick solution of an integral equation approach based on the multi-density Ornstein–Zernike theory. A good agreement between theoretical and numerical quantities is observed even in the region of the phase diagram where the slowing down of the dynamics occurs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.