Abstract
Abstract For a parabolic equation in the spatial variable x = ( x 1 , … , x n ) {x=(x_{1},\ldots,x_{n})} and time t, we consider an inverse problem of determining a coefficient which is independent of one spatial component x n {x_{n}} by lateral boundary data. We apply a Carleman estimate to prove a conditional stability estimate for the inverse problem. Also, we prove similar results for the corresponding inverse source problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.