Abstract

Microgravity and simulated microgravity may cause cardiovascular deconditioning, but mechanisms of instantaneous responses to inverse-orthostasis are not studied. Hence, we investigated transient and steady state cardiovascular changes by combining the tilt technique with cardiovascular telemetry. Normotensive and NO-deprived hypertensive Wistar rats were used to analyze responses of mean arterial blood pressure, heart rate, contractility, spontaneous baroreflex sensitivity (sBRS), and autonomic balance. Inverse-orthostasis tests were carried out by 45 degrees head-down tilting (repeated 3 x 5 mins "R", or sustained for 120 mins "S"). In normotensive rats, horizontal control blood pressure was R111.3 +/- 1.7/S110.4 +/- 2.3 mm Hg and heart rate was R385.2 +/- 5.9/S371.1 +/- 6.1 BPM. Head-down tilt induced an increase in blood pressure by R5.9/S10.6 mm Hg, while heart rate, contractility, sBRS, and autonomic balance did not change. The hypertensive response was sustained, could be prevented by prazosin (10 mg/kgbw), and augmented by subanesthetic doses of chloralose (26 and 43 mg/kgbw). In NO-suppressed hypertension, control blood pressure and heart rate were R132.4 +/- 2.9/S130.0 +/- 4.1 mm Hg and R339.2 +/- 7.9/S307.2 +/- 23.6 BPM, respectively. Head-down tilt further increased blood pressure by R5.1/S10.5 mm Hg. These data demonstrate that conscious rats respond to inverse-orthostasis by sustained elevation of blood pressure independent of NO synthesis. This response is neither due to increased contractility and altered sBRS, nor due to non-specific stress, but probably due to sympathetic activation elicited by gravity-related reflexes, which increase peripheral resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.