Abstract

The authors present an approach for constructing optimal feedback control laws for regulation of a rotating rigid spacecraft. They employ the inverse optimal control approach which circumvents the task of solving a Hamilton-Jacobi equation and results in a controller optimal with respect to a meaningful cost functional. The inverse optimality approach requires the knowledge of a control Lyapunov function and a stabilizing control law of a particular form. For the spacecraft problem, they are both constructed using the method of integrator backstepping. The authors give a characterization of (nonlinear) stability margins achieved with the inverse optimal control law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call