Abstract

This paper presents the inverse optimal design method of a nonlinear distributed consensus protocol for formation control of multiple mobile robots. Both dynamics and kinematics are considered in the protocol design. First, we propose a state transformation method to obtain a proper consensus model of a mobile robot. Then, the inverse optimal protocol is designed with respect to a meaningful cost function under the assumption of perfect angular velocity tracking. The assumption will be relaxed by extending the inverse optimal protocol using the backstepping and Lyapunov's direct methods. The numerical simulation is carried out to verify the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.