Abstract
AbstractPhotodynamic therapy is promising for combating bacteria by reactive oxygen species. However, the therapeutic efficiency of photodynamic antibacterial therapy (PDAT) is largely hindered by limited photon absorption and the low quantum yield of photosensitizers. Herein, a novel light‐harvesting platform is designed by decorating photosensitizer chlorine e6 (Ce6) into an inverse opal photonic hydrogel (Ce6/IOPG) framework for efficient light utilization to enhance PDAT. It is shown that the generating efficiency of singlet oxygen (1O2) can be tuned by the relative positions of the photonic bandgap (PBG) of IOPG and the absorption band of Ce6. The coupling of the slow photon effect with the efficient dispersion of Ce6 allows for a maximum generation of 1O2 of approximately 69.5‐fold and markedly enhances PDAT activity upon low light irradiation when the blue edge of PBG overlaps with the absorption band of Ce6. Particularly, slow photons at the blue edge show advantages in improving 1O2 generation compared to those at the red edge. The variation in 1O2 generation by altering the incident angle of light provides direct evidence for the slow photon effect in Ce6/IOPG. This work provides insights into blue‐edge slow photons in photodynamic enhancement and offers an advisable design principle for efficient antibacterial therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.