Abstract
An inverse nodal problem consists in reconstructing this operator from the given zeros of their eigenfunctions. In this work, we are concerned with the inverse nodal problem of the Sturm-Liouville operator with eigenparameter dependent boundary conditions on a finite interval. We prove uniqueness theorems: a dense subset of nodal points uniquely determine the parameters of the boundary conditions and the potential function of the Sturm-Liouville equation; and provide a constructive procedure for the solution of the inverse nodal problems. Mathematics subject classification (2010): 47A10, 47A20, 47A45, 47A67, 47B25.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.