Abstract

Inverse Laplace transform methods have a long history in the development of time-domain fluid line models. This paper presents a study combining the new Laplace-domain input/output (I/O) model derived from the network admittance matrix with the Fourier series expansion numerical inverse Laplace transform (NILT) to serve as a time-domain simulation model. A series of theorems are presented demonstrating the stability of the I/O model, which is important for the construction of the NILT method. In the previous work by the first author, the Fourier series expansion algorithm was studied, where qualitative relationships between the parameters and numerical errors were analyzed, and reliable parameter heuristics were developed. These heuristics are used for a series of numerical examples dealing with networks of 11, 35, 51, and 94 pipes by using five different pipe models. The examples are used as the basis from which the accuracy and numerical efficiency of the proposed NILT are compared to the standard metho...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.