Abstract

Inverse kinematics is one of the most basic problems that needs to be solved when using robot manipulators in a work environment. A closed-form solution is heavily dependent on the geometry of the manipulator. A solution may not be possible for certain robots. On the other hand, there may be an infinite number of solutions, as is the case of highly redundant manipulators. We propose a Genetic Algorithm (GA) to approximate a solution to the inverse kinematics problem for both the position and orientation. This algorithm can be applied to different kinds of manipulators. Since typical GAs may take a considerable time to find a solution, a parallel implementation of the same algorithm (PGA) was developed for its execution on a CUDA-based architecture. A computational model of a PUMA 500 robot was used as a test subject for the GA. Results show that the parallel implementation of the algorithm was able to reduce the execution time of the serial GA significantly while also obtaining the solution within the specified margin of error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.