Abstract

Artificial neural networks have been traditionally employed to learn and compute the inverse kinematics of a robotic arm. However, the inverse kinematics model of a typical robotic arm with joint limits is a multi-valued and discontinuous function. Because it is difficult for a multilayer neural network to approximate this type of function, an accurate inverse kinematics model cannot be obtained by using a single neural network. In order to overcome the difficulties of inverse kinematics learning, we propose a novel modular neural network system that consists of a number of expert modules, where each expert approximates a continuous part of the inverse kinematics function. The proposed system selects one appropriate expert whose output minimizes the expected position/orientation error of the end-effector of the arm. The system can learn a precise inverse kinematics model of a robotic arm with equal or more degrees of freedom than that of its end-effector. However, there are robotic arms with fewer degrees of freedom, where the system cannot learn their precise inverse kinematics model. We have adopted a modified Gauss-Newton method for finding the least-squares solution to address this issue. Through the modifications presented in this paper, the improved modular neural network system can obtain a precise inverse kinematics model of a general robotic arm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call