Abstract

The use of Natural Fibers (NFs) in Fiber-Reinforced Cementitious Composites (FRCCs) is an innovative technical solution, which has been recently employed also in High-Performance FRCCs. However, NFs are generally characterized by complex microstructure and significant heterogeneity, which influence their interaction with cementitious matrices, whose identification requires further advances in the current state of knowledge. This paper presents the results of pull-out tests carried out on sisal fibers embedded in a cementitious mortar. These results are considered for identifying the bond-slip law that describes the interaction between the sisal fibers and the cementitious matrix. A theoretical model, capable of simulating the various stages of a pull-out test, is employed as part of an inverse identification procedure of the bond-slip law. The accuracy of the resulting simulations demonstrates the soundness of the proposed theoretical model for sisal fibers embedded in a cementitious matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.