Abstract

A meshless method based on the local Petrov–Galerkin approach is applied to inverse transient heat conduction problems in three-dimensional solids with continuously inhomogeneous and anisotropic material properties. The Heaviside step function is used as a test function in the local weak form, leading to the derivation of local integral equations. Nodal points are randomly distributed in the domain analyzed, and each node is surrounded by a spherical subdomain in which a local integral equation is applied. A meshless approximation based on the moving least-squares method is employed in the implementation. After performing spatial integrations, we obtain a system of ordinary differential equations for certain nodal unknowns. A backward finite-difference method is used for the approximation of the diffusive term in the heat conduction equation. A truncated singular-value decomposition is used to solve the ill-conditioned linear system of algebraic equations at each time step. The effectiveness of the meshless local Petrov–Galerkin (MLPG) method for this inverse problem is demonstrated by numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call