Abstract

We treat the question of position and force control of a three-axis elastic robotic system on a constraint surface based on nonlinear inversion of an input-output map and linear feedback stabilization. Unlike the rigid robots, the feedback linearizing control of end point motion gives rise to unstable zero dynamics. Instability of zero dynamics is avoided by controlling a parameterized output vector corresponding to a point close to the end point of the arm. Zero dynamics are stable or almost stable as long as the parameter in the output vector does not exceed a critical value. Using the inverse controller, the control of the force and the position of the end point is possible while the end effector moves on the constraint surface. However, this excites the elastic modes. For the final capture of the terminal state and vibration suppression, a linear stabilizer is designed. Simulation results are presented to show that in the closed-loop system trajectory and force control on the constraint surface is accomplished.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.