Abstract

The rheological behaviour of an ultra high strength (UHS) steel is investigated by Gleeble tensile tests at low-deformation rates and high temperature, from 1200°C to solidus temperature. Results show that large thermal gradients exist in specimens, resulting in heterogeneous deformation, which makes the identification of constitutive parameters difficult from the directly deduced nominal stress–strain curves. The advantages of an inverse identification method – associating a direct finite element model of Gleeble tests and an optimization module – are demonstrated in such conditions. The constitutive parameters identified by this technique have been successfully applied to additional tests, more complex in nature than those used for the identification of parameters. However, such tests combining successive loading and relaxation stages have revealed some limitations of the considered constitutive model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.