Abstract

Distributed Fiber Optical Sensing (DFOS) can be used to perform compact, low-invasive and large-scale strain measurements, providing an important tool for strain-based deformation reconstruction and Structural Health Monitoring (SHM). However, most current deformation reconstruction methods are difficult to apply to the sparse uniaxial strain measurement conditions associated with DFOS, especially for structures with complex geometries. This work introduces an energy-based regularization method, i.e., a priori assumption that the actual deformation state is close to the state with the minimum deformation energy under the premise of satisfying the strain constraints, into inverse finite element method to perform load-independently deformation reconstruction under the condition of sparse uniaxial strain measurement. The Inverse Finite Element Method with Energy-based Regularization (iFEM-EBR) can naturally construct the DFOS-based deformation reconstruction model with quasi-forward finite element analysis without introducing additional mathematical processing. The sensitivity of this method to structural characteristics, such as material parameters, makes it a unique prospect in SHM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call