Abstract

The paper deals with the geometry of the shroud cavities in low pressure gas turbines and presents a design which helps to reduce the losses that arise when the shroud leakage flows interact with the main flow. The fins in low pressure gas turbines are usually attached to the shroud of the blades. They are therefore rotating while the non-rotating honeycomb or abrasive coating is mounted into the casing. The shroud leakage flow, after passing the rear fin, is decelerated in the rear cavity chamber and enters the main flow path with an axial velocity that is smaller than the axial velocity of the main flow. This difference in axial velocity, together with differences in the circumferential velocity, leads to increased turbulence, mixing losses and an unfavorable incidence of the subsequent vane row in the wall region. Contrarily to the usual configuration, the inverse fins in the turbine presented in the paper are attached to the casing while the honeycomb is mounted onto the rotating blades. This arrangement results in the location of the gap between the fin and the honeycomb being very close to the position of re-entry of the leakage flow into the main flow. Therefore, the leakage flow keeps a high velocity resulting from the narrow fin gap until re-entry which reduces the velocity difference with respect to the main flow. Consequently, the mixing losses and subsequent row losses are reduced. Due to the favorable position of the gap and a particular shaping of the honeycomb, the leakage flow is kept close to the surface of the shroud and enters the main flow with little perturbations. The paper presents numerical results of steady 3D simulations of a three-stage low pressure turbine. Results with an ideal flow path (no cavities), with shroud cavities with conventionally rotating fins and with shroud cavities with inverse fins are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.