Abstract

We propose a method to measure the directional in-plane modulation transfer function (MTF) of a digital tomosynthesis system using a sphere phantom. To assess the spatial resolution of an in-plane image of the tomosynthesis system, projection data of a sphere phantom were generated within a limited data acquisition range of 40°, and reconstructed by the FDK algorithm. To measure the in-plane MTF, we divided the Fourier transform of the reconstructed sphere phantom by that of the ideal sphere phantom, and then performed plane integral along the fz-direction. When dividing, small values in the denominator can introduce estimation errors, and these errors were reduced by the proposed method. To evaluate the performance of the proposed method, the in-plane MTF estimated by simulation and experimental data was compared to the ideal in-plane MTF generated by computer simulations using a point object. For quantitative evaluation, we measured frequency values at half-maximum and full-maximum of the directional in-plane MTF along the three different directions (i.e., f0° -, f30° -, and f60° -directions) and compared them with those of the ideal in-plane MTF. Although the sphere phantom has been regarded as an inappropriate object due to the anisotropic characteristics of tomosynthesis image, our results show that the proposed method has a reliable estimation performance, demonstrating the sphere phantom is still suitable for measuring the directional in-plane MTF for a digital tomosynthesis system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.