Abstract

Slamming loads from plunging breaking waves feature a high impulsive force and a very short duration. It is difficult to measure these loads directly in experiments due to the dynamics of the structures. In this study, inverse approaches are investigated to estimate the local slamming loads on a jacket structure using hammer test and wave test data from a model scale experiment. First, a state-of-the-art approach is considered. It uses two deconvolution techniques to first determine the impulse response functions and then to reconstruct the wave impact forces. Second, an easier applicable approach is proposed. It uses linear regression with the ordinary least square technique for the force estimation. The results calculated with these two approaches are highly identical. The linear regression approach can be extended to account for the loads transferred among different locations. This leads to lower and theoretically more accurate estimation of the loads compared to the previous two approaches. For the investigated case, the total impulse due to the wave is 22% lower. The estimated forces by the extended approach have a resolution at the millisecond level, which provides detailed information on the shape of the forces. The approach is an important tool for statistical investigations into the local slamming forces, and further on for the development of a reliable engineering model of the forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.