Abstract

Obtaining the pollutant release mass at a timely manner is crucial in emergency response for river pollution accidents. However, compared to the instantaneous source, release mass estimation of finite-duration source has been rarely studied. In addition, few studies involve the influence of partial observation data and observation data with different levels of noise on inversion results. Based on the adjoint equation method (AEM), this study developed a new release mass estimation model to make up the above deficiencies. In this model, one-dimensional physical transport advection-dispersion equation was used as governing equation to describe pollutant transport and the finite-duration sources and instantaneous sources were both considered. Two synthetic experiments and two field experiments were used to evaluate this model. In synthetic experiments, detailed analysis of the influence of observation errors and incomplete concentration data due to equipment failure was conducted. Results indicate that the effect of observation errors on the inverse estimation results was within the relative error of 12%; the incomplete concentration data could also be used to obtain inverse estimation results. The two field experiments gave confidence to the application of this model in release mass estimation in actual pollution accidents with a relative error within 10%. These findings will assist in the decision-making for dealing with actual river pollution accidents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.