Abstract

This correspondence extends and modifies classified vector quantization (CVQ) to solve the problem of inverse halftoning. The proposed process consists of two phases: the encoding phase and decoding phase. The encoding procedure needs a codebook for the encoder which transforms a halftoned image to a set of codeword-indices. The decoding process also requires a different codebook for the decoder which reconstructs a gray-scale image from a set of codeword-indices. Using CVQ, the reconstructed gray-scale image is stored in compressed form and no further compression may be required. This is different from the existing algorithms, which reconstructed a halftoned image in an uncompressed form. The bit rate of encoding a reconstructed image is about 0.51 b/pixel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.