Abstract

We present an experimental study of the inverse energy cascade, spectral condensation, and turbulent particle transport in an electromagnetically driven thin layer of NaCl electrolyte. The presence of the bottom friction provides an energy sink at large scales for the turbulent flow. This energy sink crucially contributes to the balance of the forcing and dissipation which makes the inverse cascade steady. The present work provides an estimation of the linear dissipation rate on an experimental basis. We also show how the dissipation rate affects the characteristic features of the velocity spectrum and the dynamics of the spectral condensation. A quantitative study of the turbulent diffusion shows a significant decrease of the radial transport during the spectral condensation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.