Abstract

In stress analysis of membrane-like biological structures, the geometry constructed from in vivo image, which often corresponds to a deformed state, is routinely taken as the initial stress-free geometry. In this paper, we show that this limitation can be completely removed using an inverse elastostatic approach, namely, a method for finding the initial geometry of an elastic body from a given deformed state. We demonstrate the utility of the inverse approach using a patient-specific abdominal aortic aneurysm model, and identify the scope of error in stress estimation in the conventional approach within a realistic range of material parameter variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.