Abstract

A Schrödinger operator and associated spectra may be defined for a graph by identifying edges with intervals of \mathbb R , on which coefficient functions are defined, imposing appropriate matching conditions at the internal vertices and boundary conditions at the external vertices. Following earlier work of Pivovarchik [14], we consider an inverse eigenvalue problem for a graph consisting of three equal length edges meeting at a single point, where the spectral data is the Dirichlet eigenvalues of the graph together with the Dirichlet spectra of the three individual edges. We derive, discuss and demonstrate a constructive solution method, obtain an alternative uniqueness proof, and discuss several kinds of generalizations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.