Abstract

AbstractThis article addresses the problem of inverse dynamics for three‐dimensional flexible manipulators with both lumped and distributed actuators. A recursive procedure is presented for computing the lumped inverse dynamic torques and the distributed piezoelectric actuator inputs for simultaneously tracking a prescribed end‐point trajectory and reducing induced vibrations in the manipulator. The procedure sequentially solves for the non‐causal inverse dynamic torques and piezoelectric voltages applied to each link in the manipulator, starting from the last element in the chain and proceeding to the base element. The method allows trajectory tracking wherein controllability of the structural vibrations is assured in all possible configurations through the use of only one motor at each intermediate joint and three motors at the ground. Numerical simulation shows that the elastic vibrations can be reduced significantly through the use of distributed actuators while at the same time satisfying the trajectory tracking requirement through the use of inverse dynamics. © 1994 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.