Abstract

Abstract This paper presents an algorithm for solving the inverse dynamics of a parallel manipulator (PM) with offset universal joints (RR–joints) via the Newton–Euler method. The PM with RR–joints increase the joint stiffness and enlarge the workspace but introduces additional joint parameters and constraint torques, rendering the dynamics more complex. Unlike existing studies on PMs with RR–joints, which emphasize the kinematics and joint performance, this paper studies the dynamical model. First, an iterative algorithm is established through a rigid body velocity transformation, which calculates the input parameters of the link velocity and acceleration. A linear system of equations in matrix form is then established for the entire PM through the Newton–Euler method. By using the generalized minimal residual method (GMRES) to solve the equation system, all the forces and torques on the joints can be obtained, from which the required actuation force can be derived. This method is validated through numerical simulations using the automatic dynamic analysis of multibody systems software. The proposed method is suitable for establishing the dynamic model of complex PMs with redundant or hybrid structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call