Abstract

Background and ObjectiveStatistical atlases of brain structure can potentially contribute in the surgical and radiotherapeutic treatment planning for the brain tumor patients. However, the current brain image-registration methods lack of accuracy when it comes to the mass-effect caused by tumor growth. Numerical simulations, such as finite element method (FEM), allow us to calculate the resultant pressure and deformation in the brain tissue due to tumor growth, and to predict the mass-effect. To date, however, the pressure boundary in the brain tissue due to tumor growth has been simply presented as a constant profile throughout the entire tumor outer surface that resulted in discrepancy between the patient imaging data and brain atlases. MethodsIn this study, we employed a fully-coupled inverse dynamic FE-optimization method to estimate the resultant variable pressure boundary due to tumor resection surgery. To do that, magnetic resonance imaging data of two patients’ pre- and post-tumor resection surgery were registered, segmented, volume-meshed, and prepared for fully-coupled inverse dynamic FE-optimization simulations. Two different pressure boundaries were defined on the brain cavity after tumor resection including: a) a constant pressure boundary and b) a variable pressure boundary. The inverse FE-optimization algorithm was used to find the optimum constant and variable pressure boundaries that result in the least distance between the surface-nodes of the post-surgery brain cavity and pre-surgery tumor. ResultsThe results revealed that a variable pressure boundary causes a considerably lower mean percentage error compared to a constant pressure one; hence, it can more effectively address the realistic boundary in tumor resection surgery and predict the mass-effect. ConclusionsThe proposed variable pressure boundary can be a robust tool that allows batch processing to register the brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. This approach is also computationally inexpensive and can be coupled to any FE software to run. The findings of this study have implications for not only predicting the accurate pressure boundary and mass-effect before tumor resection surgery, but also for predicting some clinical symptoms of brain cancers and presenting useful tools for APPLICATIONs in image-guided neurosurgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call