Abstract
There is evidence that metallic glasses can show increased plasticity as the temperature is lowered. This behaviour is the opposite to what would be expected from phenomena such as the ductile–brittle transition in conventional alloys. Data collected for the plasticity of different metallic–glass compositions tested at room temperature and below, and at strain rates from rate 10−5 to 103 s−1, are reviewed. The analogous effects of low temperature and high strain rate, as observed in conventional alloys, are examined for metallic glasses. The relevant plastic flow in metallic glasses is inhomogeneous, sharply localised in thin shear bands. The enhanced plasticity at lower temperature is attributed principally to a transition from shear on a single dominant band to shear on multiple bands. The origins of this transition and its links to shear bands operating ‘hot’ or ‘cold’ are explored. The stress drop on a shear band after initial yielding is found to be a useful parameter for analysing mechanical behaviour. Schematic failure mode maps are proposed for metallic glasses under compression and tension. Outstanding issues are identified, and design rules are considered for metallic glasses of improved plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.