Abstract

In this work a semi-discretization method is presented for the inverse determination of spatially- and temperature-dependent thermal conductivity in a one-dimensional heat conduction domain without internal temperature measurements. The temperature distribution is approximated as a polynomial function of position using boundary data. The derivatives of temperature in the differential heat conduction equation are taken derivative of the approximated temperature function, and the derivative of thermal conductivity is obtained by finite difference technique. The heat conduction equation is then converted into a system of discretized linear equations. The unknown thermal conductivity is estimated by directly solving the linear equations. The numerical procedures do not require prior information of functional form of thermal conductivity. The close agreement between estimated results and exact solutions of the illustrated examples shows the applicability of the proposed method in estimating spatially- and temperature-dependent thermal conductivity in inverse heat conduction problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call