Abstract

Non-reciprocal devices such as isolators and circulators are key enabling technologies for communication systems, both at microwave and optical frequencies. Although non-reciprocal devices based on magnetic effects are available for free-space and fibre-optic communication systems, their on-chip integration has been challenging, primarily due to the concomitant high insertion loss, weak magneto-optical effects and material incompatibility. We show that χ(3) nonlinear resonators can be used to achieve all-passive, low-loss, bias-free non-reciprocal transmission for applications in photonic systems such as chip-scale LiDAR. A multi-port nonlinear Fano resonator is used as an on-chip, non-reciprocal pulse router for frequency comb-based optical ranging. Because time-reversal symmetry imposes stringent limitations on the operating power range and transmission of a single nonlinear resonator, we implement a cascaded Fano–Lorentzian resonator system that overcomes these limitations and substantially improves the insertion loss and operating power range of current state-of-the-art devices. This work provides a platform-independent design for non-reciprocal transmission and routing that is ideally suited for photonic integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.