Abstract
Abstract The “one-to-many” problem is a typical challenge that faced by many machine learning aided inverse nanophotonics designs where one target optical response can be achieved by many solutions (designs). Although novel training approaches, such as tandem network, and network architecture, such as the mixture density model, have been proposed, the critical problem of solution degeneracy still exists where some possible solutions or solution spaces are discarded or unreachable during the network training process. Here, we report a solution to the “one-to-many” problem by employing a conditional generative adversarial network (cGAN) that enables generating sets of multiple solution groups to a design problem. Using the inverse design of a transmissive Fabry–Pérot-cavity-based color filter as an example, our model demonstrates the capability of generating an average number of 3.58 solution groups for each color. These multiple solutions allow the selection of the best design for each color which results in a record high accuracy with an average index color difference ΔE of 0.44. The capability of identifying multiple solution groups can benefit the design manufacturing to allow more viable designs for fabrication. The capability of our cGAN is verified experimentally by inversely designing the RGB color filters. We envisage this cGAN-based design methodology can be applied to other nanophotonic structures or physical science domains where the identification of multi-solution across a vast parameter space is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.