Abstract
Generating optimal nanomaterials using artificial neural networks can potentially lead to a notable revolution in future materials design. Although progress has been made in creating small and simple molecules, complex materials such as crystalline porous materials have yet to be generated using any of the neural networks. Here, we have implemented a generative adversarial network that uses a training set of 31,713 known zeolites to produce 121 crystalline porous materials. Our neural network takes in inputs in the form of energy and material dimensions, and we show that zeolites with a user-desired range of 4 kJ/mol methane heat of adsorption can be reliably produced using our neural network. The fine-tuning of user-desired capability can potentially accelerate materials development as it demonstrates a successful case of inverse design of porous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.