Abstract

Compared with electronic integrated circuits, photonic integrated circuits have many advantages and arise as a promising candidate for our next-generation computation and communication systems. However, the feature size of photonic integrated circuits is still large for on-chip large-scale and high-density integration. Inverse design method, powered by advanced algorithms, has been adopted to greatly reduce the footprint of photonic components because it searches for the optimal photonic structures in the full structural parameter space. This talk will cover our recent efforts on inverse-designed photonic components with reduced feature size, including polarization rotators, reflectors, photonic welding points, waveguide crossings, and photonic jumpers. These components will contribute to construction and development of advanced photonic chips with significantly enhanced integration density, scale, and functionality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call