Abstract

Photonic integrated circuits for wideband and multi-band optical communications will need waveguide crossings that operate at all the wavelengths required by the system. In this Letter, we use the modified gradient decedent method to optimize the dual-wavelength band (DWB) crossings on both single- and double-level platforms. On the single-level platform, the simulation results show insertion losses (ILs) less than 0.07 and 0.11 dB for a crossing working at a DWB of 1.5-1.6 and 1.95-2.05 µm. ILs are less than 0.1 and 0.2 dB for a crossing operating in the DWB of 1.5-1.6 and 2.2-2.3 µm. On the double-layer platform, the simulated results show IL less than 0.08 dB across the wavelength range of 1.25-2.25 µm. We experimentally demonstrate the DWB crossing operating at 1.5-1.6 and 2.2-2.3 µm to have IL less than 0.3 and 0.4 dB and crosstalk of -28 and -26dB in the two bands, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.